A novel G protein-coupled receptor, related to GPR4, is required for assembly of the cortical actin skeleton in early Xenopus embryos.

نویسندگان

  • Qinghua Tao
  • Brett Lloyd
  • Stephanie Lang
  • Douglas Houston
  • Aaron Zorn
  • Chris Wylie
چکیده

As the fertilized Xenopus egg undergoes sequential cell divisions to form a blastula, each cell develops a network of cortical actin that provides shape and skeletal support for the whole embryo. Disruption of this network causes loss of shape and rigidity of the embryo, and disrupts gastrulation movements. We previously showed that lysophosphatidic acid (LPA) signaling controls the change in cortical actin density that occurs at different stages of the cell cycle. Here, we use a gain-of-function screen, using an egg cDNA expression library, to identify an orphan G protein-coupled cell-surface receptor (XFlop) that controls the overall amount of cortical F-actin. Overexpression of XFlop increases the amount of cortical actin, as well as embryo rigidity and wound healing, whereas depletion of maternal XFlop mRNA does the reverse. Both overexpression and depletion of XFlop perturb gastrulation movements. Reciprocal rescue experiments, and comparison of the effects of their depletion in early embryos, show that the XLPA and XFlop signaling pathways play independent roles in cortical actin assembly, and thus that multiple signaling pathways control the actin skeleton in the blastula.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plakoglobin is required for maintenance of the cortical actin skeleton in early Xenopus embryos and for cdc42-mediated wound healing

Early Xenopus embryos are large, and during the egg to gastrula stages, when there is little extracellular matrix, the cytoskeletons of the individual blastomeres are thought to maintain their spherical architecture and provide scaffolding for the cellular movements of gastrulation. We showed previously that depletion of plakoglobin protein during the egg to gastrula stages caused collapse of e...

متن کامل

G-protein-coupled signals control cortical actin assembly by controlling cadherin expression in the early Xenopus embryo.

During embryonic development, each cell of a multicellular organ rudiment polymerizes its cytoskeletal elements in an amount and pattern that gives the whole cellular population its characteristic shape and mechanical properties. How does each cell know how to do this? We have used the Xenopus blastula as a model system to study this problem. Previous work has shown that the cortical actin netw...

متن کامل

Lysophosphatidic acid signaling controls cortical actin assembly and cytoarchitecture in Xenopus embryos.

The mechanisms that control shape and rigidity of early embryos are not well understood, and yet are required for all embryonic processes to take place. In the Xenopus blastula, the cortical actin network in each blastomere is required for the maintenance of overall embryonic shape and rigidity. However, the mechanism whereby each cell assembles the appropriate pattern and number of actin filam...

متن کامل

Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development.

Inca (induced in neural crest by AP2) is a novel protein discovered in a microarray screen for genes that are upregulated in Xenopus embryos by the transcriptional activator protein Tfap2a. It has no significant similarity to any known protein, but is conserved among vertebrates. In Xenopus, zebrafish and mouse embryos, Inca is expressed predominantly in the premigratory and migrating neural cr...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 132 12  شماره 

صفحات  -

تاریخ انتشار 2005